Boltzmann Machines

نویسنده

  • Geoffrey E. Hinton
چکیده

A Boltzmann Machine is a network of symmetrically connected, neuronlike units that make stochastic decisions about whether to be on or off. Boltzmann machines have a simple learning algorithm that allows them to discover interesting features in datasets composed of binary vectors. The learning algorithm is very slow in networks with many layers of feature detectors, but it can be made much faster by learning one layer of feature detectors at a time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on Boltzmann Machines

I. INTRODUCTION Boltzmann machines are probability distributions on high dimensional binary vectors which are analogous to Gaussian Markov Random Fields in that they are fully determined by first and second order moments. A key difference however is that augmenting Boltzmann machines with hidden variables enlarges the class of distributions that can be modeled, so that in principle it is possib...

متن کامل

Learning and Evaluating Boltzmann Machines

We provide a brief overview of the variational framework for obtaining deterministic approximations or upper bounds for the log-partition function. We also review some of the Monte Carlo based methods for estimating partition functions of arbitrary Markov Random Fields. We then develop an annealed importance sampling (AIS) procedure for estimating partition functions of restricted Boltzmann mac...

متن کامل

A Study of Maximum Matching on Boltzmann Machines

The Boltzmann machine is one of the most popular neural network models used to cope with diicult combinatorial optimisation problems. It has been used to nd near optimum solutions to such hard problems as graph partitioning and the Travelling Salesman problem. However, very little is known about the time complexity of solving combinatorial optimisation problems on Boltzmann machines. This issue...

متن کامل

Synchronous Boltzmann Machines Can Be Universal Approximators

we prove in this paper that the class of reversible synchronous Boltzmann machines is universal for the representation of arbitrary functions defined on finite sets. This completes a similar result from Sussmann in the sequential case. Keywords-Synchronous random fields, Cellular automata, Gibbs distributions, Boltzmann machines. Neural networks.

متن کامل

Discriminative Restricted Boltzmann Machines are Universal Approximators for Discrete Data

This report proofs that discriminative Restricted Boltzmann Machines (RBMs) are universal approximators for discrete data by adapting existing universal approximation proofs for generative RBMs. Discriminative Restricted Boltzmann Machines are Universal Approximators for Discrete Data Laurens van der Maaten Pattern Recognition & Bioinformatics Laboratory Delft University of Technology

متن کامل

Large Margin Boltzmann Machines

Boltzmann Machines are a powerful class of undirected graphical models. Originally proposed as artificial neural networks, they can be regarded as a type of Markov Random Field in which the connection weights between nodes are symmetric and learned from data. They are also closely related to recent models such as Markov logic networks and Conditional RandomFields. Amajor challenge for Boltzmann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010